Chapter 8:

Sequences and summation

Definitions

- Sequence: an ordered list of elements
 - Like a set, but:
 - Elements can be duplicated
 - Elements are ordered
- A sequence is a function from a subset of Z (integer numbers) to a set S
 - $-a_n$ is the image of n
 - $-a_n$ is a term in the sequence
 - $\{a_n\}$ means the entire sequence

Sequence examples

- $a_n = 3n$
 - The terms in the sequence are a_1, a_2, a_3, \ldots
 - The sequence $\{a_n\}$ is $\{3, 6, 9, 12, \dots\}$
- $b_n = 2^n$
 - The terms in the sequence are b_1, b_2, b_3, \ldots
 - The sequence $\{b_n\}$ is $\{2, 4, 8, 16, 32, \dots\}$
- Note that sequences are indexed from 1
 - Not in all other textbooks, though!

- The difference is in how they grow
- Arithmetic sequences increase by a constant *amount*
 - it is a sequence of form a, a+d, a+2d,..., a + nd
 where the *initial term* a and the *common difference* d are real numbers

Ex: $a_n = 3n$

- The sequence $\{a_n\}$ is $\{3, 6, 9, 12, \dots\}$
- Each number is 3 more than the last
- initial term $\mathbf{a} = 3$
- common difference $\mathbf{d} = 3$

- Geometric sequences increase by a constant *factor*
- it is a sequence of form a, ar, ar², ar³,arⁿ
 where the *initial term* is **a** and the *common ratio* **r** are real numbers.

EX: $b_n = 2^n$

- The sequence $\{b_n\}$ is $\{2, 4, 8, 16, 32, \dots\}$
- Each number is twice the previous
- initial term **a** =2
- common ratio $\mathbf{r} = 32$

- Ex: the sequence $\{b_n\}$ with $b_n = (-1)^n$, $\{C_n\}$ with $C_{n=}2*5^n$ are geometric progression
 - $b_n = -1, 1, -1, 1, \dots$ initial term = -1, common ratio= -1
 - $C_n = 10,50,250,1250,...$ initial term = 10, common ratio= 5

- Ex: the sequence {S_n} with Sn = -1 + 4n is arithmetic sequence where
 S_n = 3, 7, 11,.....
 - initial term = 3,
 - common Difference= 4

Special, Integer Sequences

Ex: Find a formula for the following sequences:
A. 1, ¹/₂, ¹/₄, 1/8, 1/16
Sol: a_n = 1/2ⁿ⁻¹ it a geometric progression with initial

term = 1 and common ration = $\frac{1}{2}$

B. 5, 11, 17, 23, 29 ... Sol: $a_n = 6n - 1$ is arithmetic progression with a = 5, and d = 6

Useful sequences

Nth term	First 5 terms
n ²	1, 4, 9, 16, 25,
2 ⁿ	2, 4, 8, 16, 32,
n!	1, 2, 6, 24, 120,

Note: to know more useful sequences go to page 228 table 1

Summations

$$\sum_{k=1}^{5} (k+1) = 2 + 3 + 4 + 5 + 6 = 20$$

$$\sum_{j=0}^{4} (-2)^j = (-2)^0 + (-2)^1 + (-2)^2 + (-2)^3 + (-2)^4 = 11$$

$$\sum_{i=1}^{10} 3 = 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 = 30$$

$$\sum_{i=1}^{n} c = c * n \Longrightarrow \sum_{i=1}^{10} 3 = 10 * 3 = 30$$

$$\sum_{j=0}^{8} \left(2^{j+1} - 2^{j} \right) = \left(2^{1} - 2^{0} \right) + \left(2^{2} - 2^{1} \right) + \left(2^{3} - 2^{2} \right) + \dots \left(2^{9} - 2^{8} \right) = 511$$

 $\sum_{j=1}^{5} j^2 = \sum_{k=0}^{4} (K+1)^2 = \sum_{L=2}^{6} (L-1)^2 = 1 + 4 + 9 + 16 + 25 = 55$

Double summations

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} \left(\sum_{j=1}^{3} ij \right) = \sum_{i=1}^{4} i \left(\sum_{j=1}^{3} j \right) = \sum_{i=1}^{4} i \left(1 + 2 + 3 \right)$$
$$= \sum_{i=1}^{4} 6i = 6 \sum_{i=1}^{4} i = 6(1 + 2 + 3 + 4) = 6 * 10 = 60$$

Useful summation formulae

$$\sum_{k=0}^{n} ar^{k} = a(r^{n+1}-1)/(r-1), r \neq 1$$

$$\sum_{k=1}^{n} k = n(n+1)/2$$

$$\sum_{k=1}^{n} k^{2} = n(n+1)(2n+1)/6$$

$$\sum_{k=1}^{n} k^{3} = n^{2}(n+1)^{2}/4$$

$$\sum_{k=0}^{\infty} x^{k} = 1/(1-x), |x| < 1$$

$$\sum_{k=0}^{\infty} kx^{k-1} = 1/(1-x)2, |x| < 1$$

Ex: find the value of

$$\sum_{k=50}^{100} k^2$$

$$\sum_{k=1}^{100} k^2 = \left(\sum_{k=1}^{49} k^2\right) + \sum_{k=50}^{100} k^2$$
$$\sum_{k=50}^{100} k^2 = \left(\sum_{k=1}^{100} k^2\right) - \sum_{k=1}^{49} k^2$$
$$= \frac{100 \cdot 101 \cdot 201}{6} - \frac{49 \cdot 50 \cdot 99}{6}$$
$$= 338,350 - 40,425$$
$$= 297,925.$$

Ex: find the value of

$$\sum_{k=2}^{100} k^2$$

$$\sum_{k=2}^{100} k^2 = \sum_{k=1}^{100} k^2 - (1)^2$$

Ex: find the value of

$$\sum_{k=-2}^{100} k^2 = \sum_{k=1}^{100} k^2 + (-2)^2 + (-1)^2 + (0)^2$$

Ex : Given that
$$\sum_{k=1}^{100} k^2 = 338,350$$
 find the value of :

$$A.\sum_{k=1}^{99} k^2 \qquad B.\sum_{k=1}^{101} k^2$$

$$A \cdot \sum_{k=1}^{99} k^2 = \sum_{k=1}^{100} k^2 - (100)^2 = 338,350 - 10,000 = 328,350$$

$$B \cdot \sum_{k=1}^{101} k^2 = \sum_{k=1}^{100} k^2 + (101)^2 = 338,350 + 10,201 = 348,551$$

Ex : Given that
$$\sum_{k=1}^{100} k^2 = 338,350$$
 find the value of : $\sum_{k=1}^{100} k^2 + 10 = \sum_{k=1}^{100} k^2 + 10 = \sum_{k=1}^{100} 10 + \sum_{k=1}^{100} k^2 = 100 \times 10 + 338,350 = 339,350$