## Chapter 8:

## Sequences and summation

## Definitions

- Sequence: an ordered list of elements
- Like a set, but:
- Elements can be duplicated
- Elements are ordered
- A sequence is a function from a subset of $\mathbf{Z}$ (integer numbers) to a set $S$
$-a_{n}$ is the image of $n$
$-a_{n}$ is a term in the sequence
$-\left\{a_{n}\right\}$ means the entire sequence


## Sequence examples

- $a_{n}=3 n$
- The terms in the sequence are $a_{1}, a_{2}, a_{3}, \ldots$
- The sequence $\left\{a_{n}\right\}$ is $\{3,6,9,12, \ldots\}$
- $b_{n}=2^{n}$
- The terms in the sequence are $b_{1}, b_{2}, b_{3}, \ldots$
- The sequence $\left\{b_{n}\right\}$ is $\{2,4,8,16,32, \ldots\}$
- Note that sequences are indexed from 1
- Not in all other textbooks, though!


## Geometric vs. arithmetic sequences

- The difference is in how they grow
- Arithmetic sequences increase by a constant amount
- it is a sequence of form $a, a+d, a+2 d, \ldots \ldots \ldots, a+n d$ where the initial term a and the common difference $\mathbf{d}$ are real numbers

Ex: $a_{n}=3 n$

- The sequence $\left\{a_{n}\right\}$ is $\{3,6,9,12, \ldots\}$
- Each number is 3 more than the last
- initial term $\mathbf{a}=3$
- common difference $\mathbf{d}=3$


## Geometric vs. arithmetic sequences

- Geometric sequences increase by a constant factor
- it is a sequence of form $a$, $a r, ~ a r^{2}$, $a r^{3} \ldots \ldots \ldots, a^{n}$
where the initial term is a and the common ratio $\mathbf{r}$ are real numbers.
$E X: b_{n}=2^{n}$
- The sequence $\left\{b_{n}\right\}$ is $\{2,4,8,16,32, \ldots\}$
- Each number is twice the previous
- initial term $\mathbf{a}=2$
- common ratio $\mathbf{r}=32$


## Geometric vs. arithmetic sequences

- Ex: the sequence $\left\{\mathrm{b}_{\mathrm{n}}\right\}$ with $\mathrm{b}_{\mathrm{n}}=(-1)^{\mathrm{n}},\left\{\mathrm{C}_{\mathrm{n}}\right\}$ with $\mathrm{C}_{\mathrm{n}}=2 * 5^{\mathrm{n}}$ are geometric progression
$-b_{n}=-1,1,-1,1, \ldots \ldots$. initial term $=-1$, common ratio $=-1$
$-C_{n}=10,50,250,1250, \ldots \ldots \ldots$.
initial term $=10$,
common ratio $=5$


## Geometric vs. arithmetic sequences

- Ex: the sequence $\left\{S_{n}\right\}$ with $S n=-1+4 n$ is arithmetic sequence where $S_{n}=3,7,11, \ldots \ldots \ldots$
initial term $=3$,
common Difference $=4$


## Special, Integer Sequences

- Ex: Find a formula for the following sequences:
A. $1,1 / 2,1 / 4,1 / 8,1 / 16$

Sol: $a_{n}=1 / 2^{n-1}$ it a geometric progression with initial term $=1$ and common ration $=1 / 2$
B. $5,11,17,23,29 \ldots$

Sol: $\mathrm{a}_{\mathrm{n}}=6 \mathrm{n}-1$ is arithmetic progression with $\mathrm{a}=5$, and $\mathrm{d}=6$

## Useful sequences

| Nth term | First 5 terms |
| :--- | :--- |
| $\mathrm{n}^{2}$ | $1,4,9,16,25, \ldots \ldots$. |
| $2^{\mathrm{n}}$ | $2,4,8,16,32, \ldots \ldots \ldots$ |
| $\mathrm{n}!$ | $1,2,6,24,120, \ldots \ldots$. |

Note: to know more useful sequences go to page 228 table 1

## Summations

## A summation:



## Evaluating sequences

$$
\begin{aligned}
& \sum_{k=1}^{5}(k+1)=2+3+4+5+6=20 \\
& \sum_{j=0}^{4}(-2)^{j}=(-2)^{0}+(-2)^{1}+(-2)^{2}+(-2)^{3}+(-2)^{4}=11 \\
& \sum_{i=1}^{10} 3=3+3+3+3+3+3+3+3+3+3=30 \\
& \sum_{i=1}^{n} c=c * n \Longrightarrow \sum_{i=1}^{10} 3=10 * 3=30 \\
& \sum_{j=0}^{8}\left(2^{j+1}-2^{j}\right)=\left(2^{1}-2^{0}\right)+\left(2^{2}-2^{1}\right)+\left(2^{3}-2^{2}\right)+\ldots\left(2^{9}-2^{8}\right)=511 \\
& \sum_{j=1}^{5} j^{2}=\sum_{k=0}^{4}(K+1)^{2}=\sum_{L=2}^{6}(L-1)^{2}=1+4+9+16+25=55
\end{aligned}
$$

## Double summations

$$
\begin{aligned}
\sum_{i=1}^{4} \sum_{j=1}^{3} i j & =\sum_{i=1}^{4}\left(\sum_{j=1}^{3} i j\right)=\sum_{i=1}^{4} i\left(\sum_{j=1}^{3} j\right)=\sum_{i=1}^{4} i(1+2+3) \\
& =\sum_{i=1}^{4} 6 i=6 \sum_{i=1}^{4} i=6(1+2+3+4)=6 * 10=60
\end{aligned}
$$

Is equivalent to:
int sum $=0$;
for ( int $i=1 ; i<=4 ; i++$ )
for (int $j=1 ; j<=3 ; j++$ )
sum $+=i * j ;$

## Useful summation formulae

$$
\begin{aligned}
& \sum_{k=0}^{n} a r^{k}=a\left(r^{n+1}-1\right) /(r-1), r \neq 1 \\
& \sum_{k=1}^{n} k=n(n+1) / 2 \\
& \sum_{k=1}^{n} k^{2}=n(n+1)(2 n+1) / 6 \\
& \sum_{k=1}^{n} k^{3}=n^{2}(n+1)^{2} / 4 \\
& \sum_{K=0}^{\infty} x^{k}=1 /(1-x),|x|<1 \\
& \sum_{K=0}^{\infty} k x^{k-1}=1 /(1-x) 2,|x|<1
\end{aligned}
$$

## Evaluating sequences

## Ex: find the value of

$$
\begin{aligned}
& \sum_{k=50}^{100} k^{2} \\
& \sum_{k=1}^{100} k^{2}=\left(\sum_{k=1}^{49} k^{2}\right)+\sum_{k=50}^{100} k^{2} \\
& \sum_{k=50}^{100} k^{2}=\left(\sum_{k=1}^{100} k^{2}\right)-\sum_{k=1}^{49} k^{2} \\
&=\frac{100 \cdot 101 \cdot 201}{6}-\frac{49 \cdot 50 \cdot 99}{6} \\
&=338,350-40,425 \\
&=297,925 .
\end{aligned}
$$

## Evaluating sequences

Ex: find the value of

$$
\begin{aligned}
& \sum_{k=2}^{100} k^{2} \\
& \sum_{k=2}^{100} k^{2}=\sum_{k=1}^{100} k^{2}-(1)^{2}
\end{aligned}
$$

## Evaluating sequences

Ex: find the value of

$$
\begin{gathered}
\sum_{k=-2}^{100} k^{2} \\
\sum_{k=-2}^{100} k^{2}=\sum_{k=1}^{100} k^{2}+(-2)^{2}+(-1)^{2}+(0)^{2}
\end{gathered}
$$

## Evaluating sequences

Ex : Given that $\sum_{k=1}^{100} k^{2}=338,350$ find the value of :

$$
\begin{aligned}
& \text { A. } \sum_{k=1}^{99} k^{2} \quad B \cdot \sum_{k=1}^{101} k^{2} \\
& \text { A. } \sum_{k=1}^{99} k^{2}=\sum_{k=1}^{100} k^{2}-(100)^{2}=338,350-10,000=328,350 \\
& \text { B. } \sum_{k=1}^{101} k^{2}=\sum_{k=1}^{100} k^{2}+(101)^{2}=338,350+10,201=348,551
\end{aligned}
$$

Ex: Given that $\sum_{k=1}^{100} k^{2}=338,350$ find the value of : $\quad \sum_{k=1}^{100} k^{2}+10=$ $\sum_{k=1}^{100} k^{2}+10=\sum_{k=1}^{100} 10+\sum_{k=1}^{100} k^{2}=100 * 10+338,350=339,350$

